10

conclusion that this transfer would be driven by competition is the product of

its mistaken economic analysis.



(,;.‘lt .5

Investment under
Uncertainty

Avinash K. Dixit and Robert S. Pindyck

Princeton University Press
Princeton, New Jersey



136 A Firnmt's Decisions

must decide when to invest in a single project. The cost of the investment, /, is
known and fixed, but the value of the project, ¥/, follows a geometric Brownian
motion. The simple net present value rule is to invest as long as ¥ > /, but as
McDonald and Siegel demonstrated, this is incorrect. Because furure values
of ¥ are unknown, there is an opportunity cost to investing today. Hence the
optimal investment rulc is to invest when V is at least as large as a critical
value 1* that exceeds /. As we will see, for reasonable parameter values, this
critical value may be two or three times as large as /. Hence the simple NPV
rule is not just wrong; it is often very wrong.

After describing the basic model in more detail, we will show how the
optimal investment rule (that is, the critical value V* ) can be found by dynamic
programming. An issuc that arises. however, is the choice of discount rate.
I capital markets are “complete” (in a sensc that will be made clear), the
investment problem can be viewed as a problem in option pricing, and solved
using the techniques of contingent claims analysis. We will re-solve the optimal
investment problem in this way, and then examine the characteristics of the
firm’s option to invest and its dependence on key parameters. Finally, we will
extend the model by considering alternative stochastic processes for the value
of the project, V. In particular, we will find and characterize the optimal
investment rules that apply when V' follows a mean-reverting process, and
then when it follows a mixed Brownian motion/Poisson jump process.

1 The Basic Model

Our starting point is a model first developed by McDonald and Siegel (1986).
‘i hey considered the following problem: At what point is it optimal to pay
@ sunk cost / in return for a project whose value is ¥, given that ¥ evolves
according to the following gcometric Brownian motion:

dV =V di+oVdz, 1)

where dz is the increment of a Wiener process. Equation (1) implies that
the current value of the project is known, but future values are lognormally
distributed with a variance that grows linearly with the time horizon; the exact
tormulas are in Scction 3(a) of Chapter 3. Thus although information arrives
over time (the firm obscrves 1 changing), the future value ot the project is
alvays uncertain.

Equation (1) is clearly an abstraction from most real projects. For ex-
ample, suppose the project is a widget factory with some capacity. If variable
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costs arc positive and managers have the option to shut down the factory
temporarily when the price of output is below variable cost, and/or the option
to abandon the project completely, ¥ will not follow a geometric Brownian
motion even if the price of widgets does. (We will develop models in which
the output price follows a gcometric Brownian motion and the project can
be temporarily shut down and/or abandonced in Chapters 6 and 7.) I variable
cost is positive and managers do not have the option to shut down (perhaps
becausc of regulatory constraints), ¥ can become negative, which is again in
conflict with the assumption of lognormality. In addition. onc might believe
that a compctitive product market will prevent the price from wandering too
far from long-run industry-wide marginal cost, or that stochastic changes in
price are likely to be infrequent but large, so that 1 should follow a mean-
reverting or jump process. For the time being we ignore these possibilitics in
order to provide the simplest introduction to the basic ideas and techniques.
We allow exogenously specified mean reversion in Section 5(a) of this chapter,
and consider industry cquilibrium in Chapters 8 and 9.

Note that the firm’s investment opportunity is equivakent to a perpet-
ual call option—the right but not the obligation 1o buy a share of stock at
a prespecitied price. Thercfore the decision to invest is cquivalent to decid-
ing when to exercise such an option. Thus, the investment decision can be
viewed as a problem of option valuation (as we saw in the simple examples
presented in Chapter 2).! Alternatively, it can be viewed as a problem in dy-
namic programming. We will derive the optimal investment rule in two ways,
first using dynamic programming, and then using option pricing (contingent
claims) methods. This will allow us to compare these two approaches and the
assumptions that each requires. We will then examine the characteristics of
the solution

In what follows, we will denote the value of the investment opportunity
(that is, the value of the option to invest) by F(V). We want a rule that maxi-
mizes this value. Since the payoff from investing at time 1 is F, — 7, we want
to maximize its expected present value:

F(V)y =max £[(V7 - He "), (J)

where £ denotes the expectation, T is the (unknown) future time that the
investment is made, p is a discount rate, and the maximization is subjcct to

"The investment opportunity is analogous to a perpetual call option on a dividend paying
stock. (The payout stream from the completed project is equivalent to the dividend on the stock )
A solution to this option valuation and exercise problem was first found by Samuelson (1965)
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a critical value V' * such that it is optimal to invest once V' = V*. As we will
see, a higher value of o will result in a higher V*, that is, a greater value to
waiting. It is important to keep in mind, however, that in general both growth
(« > 0) and uncertainty (¢ > 0) can create a value to waiting and thereby
affect investment timing.

In the next two sections, we will solve this investment probiem in two ways,
following the techniques described in Chapter 4. First, we will use dynamic
programming, and then we will solve the same problem over again using
contingent claims methods. This will enable us to carefully compare these
two approaches.

2 Solution by Dynamic Programming

In the terminology of Chapter 4, we have an optimal stopping problem in
continuous time. Because the investment opportunity, F(V), yiclds no cash
flows up to the time 7 that the investment is undertaken, the only return
from holding it is its capital appreciation. Hence, as we saw in Chapter 4, in
the continuation region (values of V' for which it is not optimal to invest) the
Bellman equation is

p Fdi = EWF). (7

F:quation (7) just says that over a time interval dt, the total expected return
on the investment opportunity, p F dt, is equal to its expected rate of capital
appreciation.

We expand d F using Ito’s Lemma, and we use primes to denote deriva-
tives, for example, F' =dF/dV, F' = d®>F/dV?, etc. Then

dF = F'(¥)dV + 1 F'(V)dV)"

Substituting equation (1) for dV into this expression and noting that £(d2) = 0
gives
EdFl=aV F(¥)dt+ Yo VIF'(V)dt.

Hence the Beliman equation becomes (after dividing through by dt):
Lo2V2F'Wy+aV F'(V) - pF=0. ®)

1t will be easier to analyze the solution and to compare it to that obtained using
contingent claims analysis if we make the substitution @ = p — 4. To ensure
existence of an optimum (for reasons already explained in connection with
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the deterministic case), we assume that a < p, or § > 0. With this notation,
the Bellman equation becomes the following differential equation that must
be satisfied by F(V):

W VIF' )+ (p -8V F(¥)—pF=0. (9)

In addition, F(V) must satisfy the following boundary conditions:

F(0) =0, (10)
Fv*)y=Vv* -1, (11)
F(r* =1 (12)

Condition (10) arises from the observation that if ¥ goes to zero, it will stay
at zero [this is an implication of the stochastic process (1) for V). Thercfore
the option to invest will be of no value when V' = (). The other two conditions
come from consideration of optimal investment. V¥ is the price at which it is
optimal to invest, or in the language of Chapter 4, the free boundary of the
continuation region. Then (11)is the value-matching condition; it just says that
upon investing, the firm receives a net payoff 17* — 1, Finally, condition (12) is
the “smooth-pasting” condition, discussed in Chapter 4 and its Appendix C.
If F(¥) were not continuous and smooth at the critical excreise point b'* one
could do better by exercising at a diffcrent point.

Note that equation (9) is a second-order differential equation, but there
are thrce boundary conditions that must be satistied. The reason is that al-
though the position of the first boundary (¥ = 0) is known, the position of
the second boundary is not. In other words, the “free boundary” ¥* must be
determined as part of the solution. That needs the third condition.

Equation (11) has another useful interpretation. Writeitas b - /7(J 77 -
1. When the firm invests, it gets the project valucd V', but gives up the oppor-
tunity or option to invest, which is valued at F(V). Thus its gain, net of the
opportunity cost, is ¥ — F(V). The critical value }'* is where this net gain
equals the direct or tangible cost of investment, /. Equivalently, we could
write the equation as V* = | + F(V*), setting the value of the project equal
to the full cost (direct cost plus opportunity cost) of making the investment.
We will discuss this point in more detail later.

To find F()), we must solve equation (Y) subject to the boundary condi-
tions (10)-(12). In this case a solution is easy to find; we can guess a functional
form, and determine by substitution if it works. We first state the solution and
derive some of its properties, and then discuss it in more detail.
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the quadratic expression totally:

e a0 _

0
8 do o ’

where all derivatives are evaluated at #,. Figure 5.2 shows that 3 Q /38 > 0
at 8,. Also

3Q/dc =0 B(f-1 >0

at fi > 1. Therefore 38, /da < 0. In other words, as o increases, 8 decreases,
and therefore 8, /(f; ~ 1) increases. The greater is the amount of uncertainty
over future values of V, the larger is the wedge between V* and /, that is, the
larger is the excess return the firm will demand before it is willing to make the
irreversible investment.

Readers can likewise verify two other properties of this quadratic. First,
B increases as § increases, so a higher § means a lower wedge 8 /(8; — 1).
Second, 8 decreases as p increases, so a higher p implies a larger wedge. We
will discuss these results in greater detail and offer some numcrical values in
Section 4 of this chapter.

Some limiting results concerning B, are also informative. We merely state
them; they are easily verified using the algebraic formula. First, as 0 — oo,
we have 8, — 1 and ¥* — oo, that is, the firm never invests if o is infinite.
Next consider what happens as 0 — (). We have

Ha > 0. then 8 — p/(p~8)and V* — (p/5) 1.

Ifa <0, then 8y »> coand V* — |.

These results conform to those of the deterministic case that we examined
earlier

2.B Relationship to Neoclassical Investment Theory

To push this analysis a bit further, suppose that the project itself is an infinitely
lived factory that produces a profit flow, x,, that follows the process

dn =andlt 40 ndz.

Hence V is given by

0o o
V, = 6'/ n.e P ds = ,
[ p—a
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and dV is given by equation (1). The usual Marshallian rule is to invest as
longas V, > /,orm, > (p — a)!. However, equation (14) tells us that instead

the firm should invest when
n,zn‘:;ﬁ—'(p~u)l>(p ~u)l. (17

Another way to look at this is in terms of the Jorgensonian approach to
investment.> From the quadratic equation (16) satisfied by #,, we have

B
A1

Thus the critical profit level n* can be written as

(p-a)=pt30°fy

nt=(p+ ol AN >l (18)

Since we have assumed zero depreciation, p/ is the Jorgensonian user cost of
capital; the Jorgensonian rule is to invest when n, = p/. Equation (18) says
that when future profits are uncertain, the threshold n° must exceed this user
cost of capital. ,

In the absence of uncertainty, the Jorgensonian investment rule has the
firm investing when nt; = pl, not when 1, = (p — a) /. As we saw before, this
can be viewed as an optimal timing rule. Once again, the firm must choose T
to maximize

eaT -(p-ayt
max (m' - I) et =T e T (19)
T \p—a p—uo

The solution is to invest at a time T when

My = ”ul'o’7 =l (M

(The reader can verify that « > 0 is the second-order condition for (his
maximization.) Therefore the firm should wait to invest even if there is no
uncertainty, because waiting allows the postponement (and thus discounting)
of the payment /.* As equation (18) shows, with uncertainty there is an addi-
tional % o’ B, tcrm, so that the firm must wait even longer before investing.
This additional term can be thought of as a correction to the neoclassical
investment model.

Horgenson (1963) showed that absent uncertainty, the firm should invest when the marginal
profit from an extra unit of capital equals the user cost of capital. Out thanks to Giuseppe Bertola
for suggesting this viewpoint in this context.

“To our knowledge, this point was first noted by Marglin (1963, Chapter 2).
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goods to the extent that prices are correlated with the valucs of shares or
portfolios. However, there may be cases in which this assumption will not
hold; an example might be a project to develop a new product that is unrelated
to any existing ones, or an R&D venture, the results of which may be hard to
predict.

We will assume in this section that spanning holds, that is, that in princi-
ple the uncertainty over future values of ¥ can be replicated by existing assets.
With this assumption, we can determine the investment rule that maximizes
the firm’s market value without making any assumptions about risk prefer-
ences or discount rates. Also, the use of contingent claims analysis will make
it easier to interpret certain properties of the solution. Of course, if spanning
does not hold, dynamic programming can still be used to maximize the present
value of the firm’s expected flow of profits, subject to an arbitrary discount
rate. See the discussion in Chapter 4, Section 3 for more on the relationship
between the two approaches.

We follow the theory of contingent claims valuation outlined in Chapter 4,
Section 2, but repeat some details for reinforcement and clarity. Let x be the
price of an assct or dynamic portfolio of assets perfectly correlated with V,
and denote by p.» the correlation of x with the market portfolio. Since x is
petfectly correlated with V, pyn = prm. We will assume that this asset or
portfolio pays no dividends, so its entire return is from capital gains. Then x
evolves according to

dx = pxdt +oxdz, (22)

where u, the drift rate, is the expected rate of return from holding this asset
or portfolio of assets. According to the Capital Asset Pricing Model (CAPM),
u should reflect the asset’s systematic (nondiversifiable) risk. As explained in
Chapter 4, u will be given by

u=’+¢l)m0.

where r is the risk-free interest rate, and ¢ is the market price of risk.% Thus,
1e is the risk-adjusted expected rate of return that investors would require if
they are to own the project. We will assume that o, the expected percentage
rate of change of V, is less than this risk-adjusted return p. (As we will see, the
firm would never invest if this were not the case. No matter what the current

*That is, ¢ = (r. — r)/0., where r, is the expected return on the market, and o, is the
standard deviation of that return. If we take the New York Stock Exchange Index as the market,
ra —r = 0.08 and a,, ™ 0.2, 50 ¢ ~ 0.4. For a more detailed discussion of the Capital Asset
Pricing Model, see Brealey and Myers (1991) or Duffie (1992).
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level of ¥, the firm would always be better off waiting and simply holding on
to its option to invest.) We will let § denote the difference between w and o,
that is, 5§ = 1 — a. Thus we are assuming & > 0, and this plays the same role
as the corresponding assumption in the dynamic programming formulation
of Section 2.

The parameter § plays an important role in this model. We discussed its
role as an explicit or implicit dividend in Chapter 4; here we elaborate on
those remarks. 1t will be helpful to draw upon the analogy with a financial call
option. If ¥ were the price of a share of common stock, § would be the dividend
rate on the stock. The total expected return on the stock would be u = § + «a,
that is, the dividend rate plus the expected rate of capital gain. If the dividend
rate & were zero, a call option on the stock would always be held to maturity,
and never exercised prematurely. The reason is that the entire return on the
stock is captured in its price movements, and hence by the call option, so there
is no cost to keeping the option alive. However, if the dividend rate is positive,
there is an opportunity cost to keeping the option alive rather than exercising
it. That opportunity cost is the dividend stream that one forgoes by holding
the option rather than the stock. Since 8 is a proportional dividend rate, the
higher is the price of the stock, the greater is the flow of dividends. At some
high enough price, the opportunity cost of foregone dividends becomes great
enough to make it worthwhile to exercise the option.

For our investment problem, j is the expected rate of return from owning
the completed project. It is the equilibrium rate established by the capital
market, and includes an appropriate risk premium. If § > 0, the expected
rate of capital gain on the project is less than u. Hence é is an opportunity cost
of delaying construction of the project, and instead keeping the option o imvest
alive. If 5 were zero, there would be no opportunity cost to keeping the option
alive, and one would never invest, no matter how high the NPV ol the projcct.
That is why we assume § > 0. On the other hand, if 4 is very farge, the valuc of
the option will be very small, because the opportunity cost of waiting is large.
As § — 00, the value of the option gocs to zero; in effect, the only choices are
to invest now or never, and the standard NPV rule again applics.

The parameter § can be interpreted in other ways. For example, it could
reflect the process of entry and capacity expansion by competitors. (However,
in Chapter 8 we will discuss more complete models that endogenize the pro-
cess of rivals’ entry, and find that the resulting equilibrium cannot be well
described by simply raising the 3 for each firm.) Or it can simply reflect the
cash flows from the project. If the project is infinitely lived, then equation (1)
can represent the evolution of ¥ during the operation of the project, and 8V
is the rate of cash flow that the project yields. Since we are assuming that § is
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rate r replaces the discount rate p. The same boundary conditions (10)-(12)
will also apply here, and for the same reasons as before, Thus the solution for
F (V') again has the form

FWV)y= AVH,

except that now r replaces p in the quadratic equation for the exponent By,
and therefore

B=1-r-8/+ \/[(r - 8)/o? - ;]2 +2r/o?. (24)

The critical value ¥* and the constant A are again given by cquations (14)
and (15).

Hence the contingent claims solution to our investment problem is equiv-
alent to a dynamic programming solution, under the assumption of risk neu-
trality (that is, the discount rate p is equal to the risk-free rate).” Thus whether
or not spanning holds, we can obtain a solution to the investment problem,
but without spanning, the solution will be subject to an assumed discount rate.
In either casc, the solution will have the same form, and the effects of changes
in o or § will likewise be the same. One point is worth noting, however. With-
out spanning, there is no theory for determining the “corrcct” value for the
discount rate p (unless we make restrictive assumptions about investors’ or
managers’ utility functions). The CAPM, for example, would not hold, and
so it could not be used to calculate a risk-adjusted discount rate in the usual
way.

4 Characteristics of the Optimal Investment Rule

Let us assume that spanning holds, and examine the characteristics of the
optimal investment rule and the value of the investment opportunity, as given

“This result was first demonstrated by Cox and Ross (1976). Also, nolc that equation (23)
is the Bellman equation for the maximization of the net payoff to the risk-free portfolio that we
constructed. Since the portfolio is risk-frec. the Bellman cquation for that problem is

rodt = -8V FV)di + E(dd), (i)

that is, the return on the portfolio cquals the per-period cash flow that it pays out {which is
ncgalive, since § ¥ F'(V) must be paid in to maintain the short paosition]. plus the expected rate
of capital gain. By substituting ® = F — F'(§") V and expanding d F as before, one can see that
cquation (23) follows from (i). Also, note that in equation (i), 8 = u —a and not r - a, so one must
stifl have an estimate of the risk-adjusted expected return that applies to V. This is an example
of the “equivalent risk-neutral valuation” procedure discussed in Chapter 4, Section 3. A.
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by equations (13), (14), (15), and (24). Some numerical solutions will help to
illustrate the results and show how they depend on the values of the various
parameters. As we will see, these results are qualitatively the same as those
that come out of standard option pricing models.

Unless otherwise noted, in what follows we set the cost of the investment,
I,equalto |, » = 0.04,5 = (.04, and 0 = 0.2 (at annual rates). (Note that
we do not necd to know p or o, but only the difference between them. 5.)
Payout rates on projects vary enormously from one project to another, so this
value of 4 percent for & should be viewed as reasonable, but not necessarily
representative. As for o, the standard deviation of the rate of return on the
stock market as a whole has been about 20 percent on average. Although
this represents a diversified portfolio of assets, it also includes the effects
of leverage on cquity returns, and so might he a reasonable number tor an
average asset.

Given these parameter values, gy = 2, V* = 2/ = 2, and 4 = 1 Thus
the simplec NPV rule, which says that the firm should invest as long as I is
at least as large as /, is grossly in error. For this reasonable set of paramceter
values, ' must be at least twice as large as / before the tirm should invest.
The value of the firm's investment opportunity is F (V) = }¥ 2 for ¥V < 2, and
F(V) =V - lfor ¥ > 2 (since the firm exercises its option to invest and
receives the net payoff V' — 1 when V > 2),

Figure 5.3 plots F(V') as a function of V' for these parameter values, and
also foro = ) and o = 0.3. In cach case, the tangency point of F (V) with the
line V' -- I gives the critical value V' *. The figure also shows that the simple
NPV rule must be modified to include the opportunity cost of investing now
rather than waiting. That opportunity cost is exactly F (V). When V' < 17,
F(V) > V - I andtherefore V < I+ F(V ) the value of the proiect is less than
its full cost, the direct cost / plus the opportunity cost F(}). [When o = (.
Ve=1and F(}V)=UOforV < [}

Note that F (V) increases when o increases, as daoes the critical value F°.
Thus greater uncertainty incrcases the value of a firm’s investment opportu-
nities, but (for that very reason) decreases the amount of actual investing that
the firm will do. As a result, when a firm’s market or economic environment
becomes more uncertain, the market value of the firm can go up, even though
the firm does less investing and perhaps produces less.

The dependence of V* on o is also shown more directly in Figure 5.4
Observe thal 1'* increases sharply with 0. Thus investment is highly sensitive 10
volatility in project values, irrespective of investors’ or managers' risk preferences,
and irrespective of the extent to which the riskiness of V is correlated with
the market. Firms can be risk neutral, and stochastic changes in V' can
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than in the standard model. In the standard model, an incrcasc in the interest
rate reduces investment by raising the cost of capital; in this model, it increases
the value of the option to invest and hence increases the opportunity cost of
investing now. (Figure 5.7 shows the dependence of ¥ on r for 8 equal to
004 and 008 )

Once again in this calculation we held 8 fixed as r increased. H instead we
hold « fixed, then § increases one for one with r. Now a lower r reduces gy and
increases the critical level 1*. In this sense, a lower intercst rate discourages
investment. This is a pure manifestation of the option idea: a low interest
rate makes the future relatively more important, therefore it increases the
opportunity cost of excrcising the option to invest.

Figure 5.8 provides another way of seeing how the optimal investment
rule depends on the parameter values. It also lets us cast our results in terms
of Tobin’s . Here we use the “value of assets in place” definition that ignores
the opportunity cost of exercising the option, as explained in Section 2(c)
above. Then ¢° = V*/1 = Bi/(B1 — 1) is the critical value of this g, that is,
the multiple of / required to invest. The figure shows contours of constant ¢*
plotted for different values of the parameter combinations 2r/o? and 25/02.

P
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Figure 5.6. Critical Value V * as a Function of §

We have scaled r and 8 by 2/a? because, as the reader can verify by substituting
B1 = q°/(g* — 1) into equation (16), g* must satisfy

2r (2 q°
ol ((—7—2 ) gt -1
As the figuic shows, the multiple is aige whon 5 b sinali oi s s laige.

These comparative statics results are the same as those that apply to
financial call options. Our option to invest is analogous to a perpetual call
option on a dividend-paying stock, where V is the price of the stock, § is the
(proportional) dividend rate, and 1 is the exercise price of the option. The
value of the call option on the stock and the optimal exercise rule will dc pend
on the parameters o, §, and r as illustrated by Figures 5.1-5.7. !!

We repeat that it is important to be careful when interpreting comparative
statics results, because different parameters are unlikely to be independent of
each other. For example, an increase in the risk-free rate, r, is likely to result

"' For more detailed discussions of financial call vptions and their comparative statics, sce
Cox and Rubinstein (1985) and Hull (1989).
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wherte at each time ¢, ¢, is drawn from a normal distribution with zero mean
and unit standard deviation. (Note that the coefficient 0.0577 = 0.20/V12 is
the monthly standard deviation.)

Since Vy = I = 1, the standard NPV rule would call for investing im-
mediately. However, F(Vy) = 0.25, 50 Vo < | + F(Vy), and the firm should
wait rather than invest. In Figure 5.9, the firm happens to wait approximately
five years before V reaches V* = 2. This waiting time can vary considerably
from one sample path to the next. In the sample path shown in Figure 5.10for
example, the firm must wait much longer—nearly 20 years—before ¥V reaches
the critical value of 2."

5 Alternative Stochastic Processes

The use of a geometric Brownian motion as a model for 17 is convenient,
but in some cases may not be realistic. In this section we will examine the
value of the investment opportunity and the optimal investment rule when
V follows alternative stochastic processes. We will first consider the case of a
mean-reverting process, and then a Poisson jump process.

5.A Mecan-Reverting Process
Suppose V follows the mean-reverting process
dv =gV — 1Y dr v al dz, (26)

so that the expected percentage rate of change in ¥ is (1/d) Ewdb /1) =
n (V ~1'), and the expected absolute rate of change is (1 /dt) £dV) = nt V -
n V2, a parabola that equals zero at ¥ = 0 and ¥ = ¥ and has a maximum
at ¥V = 1 /2. As we will see, an advantage of this particular process is that we
will be able to obtain an analytical solution to the investment problem.

To find the optimal investment ruie, we will use contingent claims analysis.
Let u be the risk-adjusted discount rate for the project (that is, u reflects the
systematic risk in the stochastic fluctuations in V). In this case the expccted

"The expectation and variance of this “waiting time” can be computed analyticaily. We will
not need these expressions, but refer the interested reader to some simple cases in Dixit (19934,
pp- 54-57), and the more rigorous theory in Karlin and Taylor (1981, pp. 242-244) or Harrison
(1985, pp. 11-14).
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In practice, most firms do not enjoy monopoly rights to invest, but instead
must consider the possible entry of new competitors, or expansion of existing
ones. This raises a fundamental doubt concerning our earlier conclusions.
The opportunity to wait, and its value, depend on what the firm’s competitors
do. With free entry, should this value not be reduced to zero? Would that not
restore the Marshallian criteria comparing price to the long-run average cost
in the casc of investment, and to the average variable cost for disinvestment?
Thus the reader might suspect that the theory of an individual firm would
not survive an extension of the scope of the analysis to the level of industry
equilibrium.

In this chapter and the following one, we take up these questions. The
answers are largely reassuring. What happens to the value of waiting depends
not only on the nature of competition, but also on the naturc of the uncertainty.
We find that when uncertainty is firm-specific, a firm's value of waiting survives\
and our firm-level analysis can readily be extended to the industry cquilibrium.
For aggregate or industry-wide uncertainty, the value of waiting for any ong
firm does drop to zero, but that does not restore the Marshallian criteria of
price-cost comparisons. The optimal investment and disinvestment threshold
prices differ from costs just the same way as they did in our firm-level analysis
of Chapters 5-7, albeit for a different reason. We can no longer specify the
stochastic process of the price exogenously. Price is an endogenous variable of
industry equilibrium. We must trace the uncertainty to a deeper level, namely,
the demand and cost conditions. The endogenous feedback of new entry on
price is what generates the gap between the Marshallian and the optimal rules
when uncertainty is industry-wide.

The carlier analysis of the monopoly firm also serves a useful pedagogical
purpuse, as well as a substantive one. All of our industry-ievel analysis is
conducted using the same techniques (dynamic programming and contingent
claims analysis) that were developed and illustrated in the preceding chapters.
Thus that work provides a simpler setting for readers to become familiar with
the new methods.

This chapter concerns the basic theory of industry equilibrium. In other
words, we take the firm’s decision model of Chapters 5-7, and build it as di-
rectly as possible into amodel of industry equilibrium. Then in the nest chapter
we take up various extensions and implications. We allow for heterogeneity
among firms, and we consider a simple example of imperfect competition
among a small number of firms in the industry.

Finally, and perhaps most importantly, in Chapter 9 we also examine
issues of policy regarding investment. If firms’ irreversible choices under un-
certainty are significantly influenced by the option value of the status quo
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and therefore characterized by considerable inertia, should the government
attempt to encourage investment? How will various policy instruments aftcct
investment? In particular, what will be the effect of government policies to
reduce uncertainty (for example, through the usc of price controls)? What
will be the effect of uncertainty concerning the government’s own actions
(for example, uncertainty over future tax rates and regulatory changes)? Such
questions must be examined at the industry level if they are to be useful guides
to policy in many practical situations; therefore these chapters are the right
place for their study.

Before we start on this program, we should say a few words about the
nature of irreversibilities in relation to industry-wide and firm-specific forms
of uncertainty. Investment is partially or totally irreversible when some or all
of its costs are sunk. In Chapter 1, Section 3 we offered some general reasons
why this happens. Perhaps the most prominent was the specificily of the plant
and equipment itself. This applies with greater force in the case of industry-
wide uncertainty than for firm-specific uncertainty. A steel plant cannot be
used outsidc the steel industry. If one steel firm suffers an idiosyncratic neg-
ative shock, it can sell its plant to another firm and get fairly good value tor
it, so the irreversibility is less severe. However, if the whole industry suffers a
negative shock, then the resale value of the plant is small and the irreversibil-
ity is large. Thus we should expect that our theory has greater significance in
the context of aggregate uncertainty. Of cousse, even for tirm-specific shocks,
some investment expenditures are sunk, for example, any research or explo-
ration costs incurred in the process of discovering the firm-specific random
shock. Also, even nonspecific capital (such as automobiles. computers, and
office equipment) is subject to a loss in resale value due to asymmetric infor-
mation about product quality [that is, the “lemons” problem, iltustrated by
Akerlof (1970)].

1 The Basic Intuition

Before turning to the mathematical models, we enlarge on the intuition for
the results to come. First suppose the uncertainty is firm-specific. Thus dif-
ferent firms experience independent shocks to demand (for example, a shift
of fashion in an industry with differentiated products) or cost (for example, a
chance improvement in entreprencurial skills). As in the previous chapters,
suppose cach firm’s shock has positive serial correlation; in actual models
we will specify these shocks as Brownian motions. Even though the firms are
identical ex ante, a firm that experiences a favorable shock does sneak a lcad
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other firms enter, the industry supply curve shifts to the right, and the price
rises less than proportionately with Y. Therefore price is a concave function
of ¥, and then so is the profit flow. Greater uncertainty in ¥ now reduces
the expected value of investing relative to that of not investing. That is why
the firm requires a higher current profitability (in excess of the Marshallian
normal return) before it will invest.

We should stress the similarity as well as the difference between the two
scenarios. In each, the underlying symmetric demand shock translates into an
asymmetric profit flow shock; but this happens in very different ways in the two
cases. In the case of firm-specific uncertainty, the downside of the profit shock
is cushioned by the possibility of waiting. Thus greater uncertainty makes
waiting more valuable relative to investing at once. In the case of industry-
wide uncertainty, any one firm in the mass of competitive potential firms has
a zero value of waiting. However, the upside profit potential is cut off by the
prospect of entry of other firms. Therefore greater uncertainty reduces the
value of invesling relative to that of not investing at all.

In reality there are several other factors that can affect the convexity
or concavity of profit flows as a function of the underlying shock variable. If
the firm can adjust some variable inputs instantaneously, then its profit low
becomes a convex function of the price, as we saw in Chapter 6, Section 3. In
addition, in Chapter 11 we will see that when the firm can add to its capital
stock, and its output flow is given by a production function, there can be
other ways by which the marginal profitability of an incremental investment
becomes convex in price. However, the above intuition still operates similarly.
For example, with firm-specific uncertainty, the possibility of waiting cuts off
the downside risk and makes the profit flow an even more convex function of
the underlying shock variable. In most of Chapters 8 and 9, however, we will
leave aside these additional sources of convexity. We will define each firm as
the possessor of a technology to install and operate a single discrete project
of fixed size, and focus on the two kinds of asymmetries explained just above.

2 Aggregate Uncertainty

Despite the simplicity of the underlying intuition, the general model of un-
certainty is quite difficult to set up and solve formally. The ideas are easier to
explain by constructing some special cases that together span the complexity
of the general one, so that is how we will proceed. In this section and the
next, we consider only the industry-wide shock Y. Then, in Section 4, we deal
with purely firm-specific uncertainty. Finally, some insights that do depend
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in an essential way on the joint presence of the two kinds of uncertainty arc
examined in the context of a simple but general model in Section 5.

When all uncertainty is industry-wide, the multiplicative factor X in the
general demand curve (1) is constant, so we can just set it equal to 1. Then
the industry’s inverse demand curve becomes

P =Y D). (2)
The aggregate shock Y will follow the geometric Brownian motion process
dY =aYdt +oVYd:z (3)

On the production side, we assume that there is a large number of
risk-neutral competitive firms. Each firm can undertake a single irreversible
investment, requiring an initial sunk cost 7. Once this investment is made, it
yields a flow of onc unit of output forever with no variable cost of production.
We embed such firms in an industry by supposing that cach unit of output
is very small relative to the total industry output Q, so that each firm is an
infinitesimal price taker. When Q firms are active. the short-run equilibrium
price can be determined from equation (2) above.

As we discussed before, this is the simplesi continuation of the model
of Chapters 5-7 that serves-our present purpose. Later and in Chapter 9, we
introduce various generalizations, where each firm has some variable cost,
short-run output variability, exit possibilities, etc., where the shocks affect
demand in more general ways, and where the industry has some imperfect
competition.

To set the stage for the competitive industry equitibrium, think of the
usual textbook static model. The industry price—a single number—is para-
metric to each firm. The sum of the individual firms’ optimum quantity re-
sponses io the price constitutes the industry s supply function. The equilibrium
price is determined by the condition equating industry demand and supply.
In our dynamic world with uncertainty, the corresponding equitibrium con-
cept is one of rational expectations. Each firm takes as exogenous the whole
stochastic process of the price. So we start with a price process, let all firms
respond to it, and then find the process that clears the market at cach instant.
This is a function or a mapping that takes us from onc stochastic process to
another. We have an equilibrium if we get the same price process that we
started with, or in other words, a fived point of the mapping.

Since a stochastic process as a whole is a complex mathematical object—
a vector in an uncountably infinite-dimensional function space—finding such
a fixed point in full generality is far too difficult. Luckily, the solution to our

- problem can be found using a much simpler method.
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This looks like a smooth-pasting condition, but it is not a consequence of any
optimization. Such a condition holds at any reflecting barrier for a diffusion
process.®

Now we can solve for B from equation (7) to get

B=-F " /8.

Note that B < 0; as explained earlier, the barrier cuts off some upside price
potential, so the correction to the value is a reduction. Substituting for B into
(6), we have

1

P) = —
v(P) 3B

Sl

prP M ®)

2.B Equilibrium

The quick way to find the industry’s equilibrium is to use a dynamic zero excess
profit condition. At P, the common entry threshold for all firms, each firm
is just indifferent between entering and staying out, so the value of being in,
v(P), must exactly equal the entry cost /. Using equation (8) above, this gives

- B
P= B 1 51 9

Most remarkably, this is the same entry price as that for a unit-sized mo-
nopolist firm facing the same demand process; compare this to equation (9)
of Chapter 6. The two situations differ in two ways. The monopolist of Chap-
ter 6 was not threatened by entry, so there was no upper barrier on the price
process; now there is. However, the monopolist had a positive option value
of waiting, while any of several identical potential firms of this chapter must
have zero value of waiting. It so happens that the two differences exactly offset
each other.

This coincidence between a competitive firm’s and a monopolist’s entry
threshold is in the context of a very special example. In Chapter 9 we will find
a very general result of this kind—a competitive firm can make the correct
investment decision by acting myopically in the matter of future competitive
entry, and acting as if it were going to be the last firm ever to enter this industry.
That result also rests on a similar exact offset of two effects, one on the value
of investing and the other on the value of waiting.

¢See Malliaris and Brock (1982, p. 200) or Dixit (1993a, Section 3.5).
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To understand the solution more fully, we must go into the details of the
fixed-point process for constructing the equilibrium. Consider a firm contem-
plating entry. Write f(P) for the value of its option to enter. As in Chapter 6,
this takes the form

f(Py=APY,

where Ais a constant to be determined, and B, is as above. If the firm decides
to enter when the price is P, it pays the investment cost / and receives in
return an asset that we just valued at v( P). The optimal entry threshold P*
satisfies two familiar conditions. First, value matching:

SP) =v(P) -1,
and second, smooth pasting:
(P =0 (P,
Using the functional forms for the functions f(P) and v(P), we have
AP = B(PY + P51,

and
i A(PHYA ' =B, B(PY ' +1/5.

Note that we have already solved for the constant B in terms of the assumed
upper barrier P, but some expressions convey more insight when Bis retaincd
as such.
These two equations can be solved for the threshold P* and the =
stant 4 we have 5 ’
. 1
P _ﬁl_lsl, (1

and
A= B+ _.l__ P\
Bié

1

=g [P -P'") (n

Observe two features of the solution: the barrier P affects the solution only
via the constant B in the value function v(P), and the constant A in the
option value function f(P) responds one for one to changes in B. These have
important implications for the equilibrium.
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it will earn a normal return on its sunk cost. However, we saw in Chapter 6
that it does not invest until the price rises to P*, which is 8, /(8 — 1) times
Fy. We explained this in terms of the option value of waiting.

Now we see that a unit-sized competitive firm also waits until the price
rises to the same level, even though its option value of waiting is zero. The
explanation lies in the difference between the price processes in the two cases.
The competitive firm’s price process has an upper barrier, which reduces its
expectation of future prices and returns. Specifically, since the firm knows
that alt other firms face the same choice and make the same decisions, the
price will never rise above the level that prevails at its instant of entry; the
current price when it enters is not the average but the best price it will ever

“get. If competitive firms adopted the rule of entering when the price reached
P, they would earn a normal return only at those instants when entry was
taking place—they would earn lower returns at all other instants. The average
return over time would then be insufficient to justify the initial investment
expenditurc. On the other hand, when the entry threshold exceeds Py, each
firm will experience some period of supernormal returns and some periods
of subnormal returns. The equilibrium P is exactly the level that ensures a
normal return on average.

Since the entry threshold cum industry equilibrium price coincides with
the threshold for a monopoly with the same parametersa, o, r, and 5, we need
not present detailed numerical calculations for the competitive equilibrium
case; instead we refer the reader to those in Chapters 5 and 6. However, a
few summary numbers are useful. Table 8.1 shows g; and the current rate of
return on investment at the threshold,

P/l =Bis/(Br - 1),

forr = 0.05,a =0and(0.03,and o =0,0.2,and 0.4. Note that whena = o =0,
the return P/ equais the Marshallian return, that is, the interest rate r =
0.05. This is also the case whena = 0.03 and 0 = 0.[Asdiscussed in Chapter S,
when a is positive there is a value to waiting even if therc is no uncertainty,
and indeed in this case 8,/(81 — 1) = 2.5, but since § falls as « increases, the
return remains equal to r .} For either value of a, as o is increased to 0.2 and
0.4, B falls and the required return P/ rises to about two or three times its
Marshaliian value. Hence the general finding from Chapters 5 and 6, that the
firm’s optimal decisions differ substantially from the implications of the text-
book present value approach, has an exact parallel for a competitive industry.
Jts equilibrium differs substantially from the picture offered by the Marshal-
lian theory presented in most elementary and intermediate microeconomics
textbooks.
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Table 8.1. Required Return for Competitive Entry
Note: r = 0.05
o o B ?/ 1
0 0 oo 0.050
0 0.2 2.16 0.093
0 04 1.44 0.165
0.03 0 1.67 0.050
0.03 0.2 1.35 0.077
0.03 04 1.16 0.143

3 Industry Equilibrium with Exit

The above basic model closely followed that of the monopoly firm in Chap-
ter 6, and gave us very analogous results for the competitive industry with
aggregatc uncertainty. Most of the extensions of this model are left for Chap-
ter 9. In this chapter we take up just one that fits morc naturally here. We
introduce exit, and construct a model that closely follows that of the monopoly
firm’s entry and exit decisions in Chapter 7. Once again, the results for the
competitive industry with aggregate uncertainty are thoroughly paralicl.

For exit to be a meaningful option, we need two conditions. First, the
operating profit flow must sometimes become negative; we make this possible
by introducing a variable cost C for each unit-sized firm. Second, temporary
suspension of operation and resumption without a cost penalty must be ruled
out; we do so. We also introduce a lump-sum cost of exit E. As before, this
can comprise any legally required severance payments or costs of restoring
land. It can also be negative (but numerically less than cost /), representing
any nonsunk portion of the entry cost.

Now the intuition is that the exit of other firms will generate a floor—a
lower reflecting barrier—on the price process, just as their entry generated
a ceiling—an upper reflecting barrier. Each firm will have rational expecta-
tions about the price process it faces, namely, a geometric Brownian motion
between these two barriers. The firm’s own entry and exit decisions will again
take the form of upper and lower thresholds on the price. The equilibrium
levels of the two barriers will be found from a fixed-point argument: each
firm’s thresholds should equal the barriers generated by the behavior of all
firms in the industry.
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Regard these as a pair of linear equations in A4;, 4. The coefficient matrix
aP " g P
p PP g, PR

is nonsingular as long as P > P. Then the only solution is 4 = 4 = 0.
Therefore the value of an idle firm is identically zero, as it should be, given
competitive conditions and identical firms. This completes the solution.

3.A Entry, Exit, and Price in the Copper Industry

We now return to our example of entry and exit in the copper mining industry
from Chapter 7, restating some of the numerical results to give the readers
a better feel for the magnitudes involved. In fact, the use of industry data to
illustrate the story of a firm having a monopoly right to invest was something
of an anomaly in Chapter 7; now the same numbers have a more satisfac-
tory interpretation in the context of industry equilibrium. In the central case
studied, we assumed that the capital cost of building an average-sized mine,
smelter, and refinery (producing 10 million pounds of copper per year) was
1 = $20 million, and the cost of site restoration upon abandonment was £ =
$2 million. The variable cost was C = $0.80 per pound, hut was allowed to
vary around this figure. The price volatility parameter o was 0.2 in annual
units, and was also allowed to vary around this range. The riskless interest
ratc was r = ().04, and the return shortfall was § = 0.04. With these numbers,
the Marshallian entry threshold price would be $0.88 and the exit threshold
$0.792. As shown in Table 8.2, however, the correct entry and exit thresholds
are $1.35 and $0.55, respectively. The table also shows the Marshallian and
the actual thresholds for other values of C and 0.

Figures 8.2 and 8.3 show, for the central case of C = $0.80 per pound
and o = 0.2, sample paths for the price of copper. Observe that this price
fluctuates as a geometric Brownian motion between the upper and lower
reflecting barricrs, which are the entry and exit thresholds of $1.35 and $0.55.
These thresholds are shown in the figures as horizontal lines; also shown
are the Marshallian thresholds of $0.88 and $0.79. (In the figures, time is
measured in years, and each year was divided into 50 increments for purposes
of generating sample paths.) Figure 8.2 shows a “fortunate” (from the point
of view of a copper producer) sample path, in which the price spends much of
the time at the uppcer end of its range, while Figure 8.3 shows an “unfortunate”
realization.

These figures show particular realizations of price, but we could ask what
percentage of the time the price should be expected to stay in different regions
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Table 8.2. Entry and Exit Thresholds in Copper Mining
(Note: see text for parameters)

Upper threshold Lower threshold
c T Marshallian Correct Marshallian Correct
08 0.1 0.88 1.12 0.792 0.63
08 0.2 0.88 1.35 0.792 0.55
08 0.4 0.88 1.75 0.792 0.45
0.4 0.2 0.48 0.80 0.392 0.26
0.6 0.2 0.68 1.06 0.592 0.40
08 02 0.88 1.35 0.792 0.55

1.0 02 1.08 1.60 0.992 0.70

of its range over the long run. We can answer this question by calculating the
fong-run stationary distribution for price. Begin by observing that P tollows
the geometric Brownian motion of equation (4) between its reflecting barricrs
P and P. Therefore, using [to’s Lemma, we know that p = log P follows a
simple Brownian motion with the drift parameter o' = o - 307 and the
variance parameter g, between corresponding reflecting barriers p = log P
and p = log P. Now we can use the result of Chapter 3, Section S to find
the long-run distribution of p. It is an exponential distribution, with density
Ker*, where y = 2a’/0?, and the constant of proportionality K is chosen
to achicve a total probability mass of unitv. With this_ it i< easy to calenlate
what proportion of time p spends in various subscts of the range (p. p). The
results can then be translated into the corresponding ranges for P.

For our base case parameter values, we find that, on average, price will be
between the upper Marshatlian and entry thresholds of $0.88 and $1.35 about
58.5 percent of the time. Thus more than half the time, copper producers
will be carning what in traditional microeconomic analysis we would call a
supernormal profit. Price will be betwecn the two Marshallian thresholds of
$0.79 and $0.88 about 11.3 percent of the time (in which case we can say
that firms are earning positive but subnormal profits). Finally, price will be
between the exit threshold of $0.55 and the lower Marshallian threshold of
$0.79, so that firms are incurring losses, about 30.2 percent of the time.

These figures show very dramatically how the dynamics of a competitive
industry under conditions of uncertainty will differ from the textbook picture.
For almost 90 percent of the time, we expect the copper industry to be in a
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An example will help fix the idea. Consider a pharmaccutical company
that can develop a new drug by incurring the research cost R. This yields an
initial estimate of its efficacy and profitability. The firm patcnts the drug, but
unless the profit estimate is sufficiently high, it will not incur the additional
investment expenditure 7 that is necessary to begin production. Over time the
profit estimate may increase as new uses are found for the drug, or decrease
as other drugs to treat the same condition are discovered by other firms.

We characterize the competitive equilibrium of such an industry in the
long run. There are numerous competitive firms facing independent shocks,
and there is substantial uncertainty and volatility at the firm level. However,
diffcrent firms’ shocks are independent, and the operation of the law of large
numbers cnsures that industry aggregates are nonrandom.® Thus a nonran-
dom total volume of output can be produced by firms whose identities change
through time but whose aggregate population distribution remains stationary.
However, the firm-level uncertainty leaves a mark on the industry equilibrium:
the parameters of the distribution of active firms, and therefore the actual val-
ues at which the nonrandom industry quantity and price settle, do depend on
the extent of uncertainty faced by each firm.

The idea that refatively tranquil industry-wide conditions conceal much
firm-level uncertainty has been emphasized in recent empirical work. Davis
and ! laltiwanger (1990) and others have demonstrated quite impressively the
large gross hirings and firings that underlie small net changes in employment
in the U.S. economy. The models that are constructed for applications of
this kind generally contain too much context-specific detail to let the general
intuition stand out. Our simple model can help the reader develop a better
conceptual understanding and more general intuition tor such phenomena.

We begin by specifying the nature of uncertainty in X so as to fit with the
firm’s two stages of decisions. A new entrant gets an initial draw of X from a
known distribution. Thereafter its X evolves as a geometric Brownian motion

dX=a Xdt +0 Xdz. (26)

We have interpreted X as an idiosyncratic demand shock (random fluctuations
of 1aste shifts giving rise to price premia for slightly different varieties in the
industry). What ultimately matters is the shock to profitability, and we could
also think of X as a technology shock that appears in a reduced form in the
formula for the firm’s profit flow after the instantaneously variable choices
have been optimized out, as discussed in Chapter 6, Section 3.

*Recall that we are not giving a formal rigorous treatment of this.
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There is free entry into the industry, and anyone can get the initial diaw
by paying R. However, there is no obligation to start production at once.
A further sunk investment / must be incurred to activate the process, and the
firm can wait to see if X evolves to a more favorable level before making this
irreversible commitment.

We will characterize the tong-run stochastic equilibrium of such an in-
dustry. In fact we will postulate such an equilibrium, and then dctermine
endogenously the various stationary magnitudes (price, number of firms, etc.)
that constitute the equilibrium. Suppose N is the nonrandom stream of new
entrants who pay the fee R and learn their initial X. Then their shocks will
evolve independently and stochastically. A nonrandom flow M will reach the
activation decision. We also want to keep the total number of active firms, Q.
constant. To permit this, we assume that all firms, whether waiting or active,
face an cxogenous Poisson process of death with parameter A. This process
is also independent across firms. Then in a stationary cquilibrium A must
equal A Q.

All uncertainty being idiosyncratic, we specify that each firm is risk neu-
tral and makes its decisions to maximize its expected net worth. Let r denote
the risk-free interest rate at which future profit flows are discounted.

4.A The Activation Decision

In the long-run stationary cquilibrium with a large and constant number
of active firms, each new entrant or waiting firm takes this Q as given. lis
profit flow is X D(Q). It continually observes X, and decides when to pay its
investmeni cost / and becomic an active producei. This is formally identical i«
the basic single-firm model we studied in Chapter 6, Section 1. Equation (1)
of that scction gave us the price threshold P* that triggered investment. In
the notation of this chapter, that becomes a threshold X* on the firm’s shock,
and the defining equation becomes

XD ==L ir-wr 27
B—1

where B, is the positive root of the fundamental quadratic
= %ozﬁ(ﬂ— D4+apf—-(r+1)=0

The condition that ensures convergence of the expected profit flow isr -2 > «;
note that the Poisson death probability acts like a discount rate in achicving
convergence, as we saw in the discussion of Poisson processes in Chapter 3.
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Even now the argument is not complete. The number of active firms Q
arises from a complex chain of initial entry decisions, independent random
fluctuations of the firms’ shock variables X, subsequent entry decisions, and
independent random deaths. We must show how these interact in a consistent
way to produce the industry’s equilibrium Q.

4.C The Distribution of Firms

Recall the actual life history of any one firm that has just paid the entry cost R.
It begins with an X randomly drawn from its known distribution. If the initial
X exceeds the threshold X°, the firm pays the investment cost / and becomes
an active producer at once. Otherwise it lets its X evolve, and activates if and
when X* is reached. Throughout this process, the firm faces a constant and
exogenous probability rate A of death.

Such new cntrants arrive at rate N. The full stochastic dynamics of each
of them—the probability that it will be alive and occupy a position X at time
t—can be examined using the Kolmogorov equation, which we developed in
the Appendix to Chapter 3. Here our aim is more limited. For industry equi-
librium, only the total numbers of firms in various states matter—how many
are active, and how many are waiting with what values of X. Therefore the
law of large numbers allows us to restrict attention to a long-run stationary
cquilibrium. This means that the rates of Poisson death by exit, and of activa-
tion, arc constant through time. Likewise, the numbers of firms with various
current levels of X are constant through time. Of course the actual identities
of the firms occupying these positions keep changing, but for our purpose any
firm is like any other with the same X.

The method of calculating this fong-run distribution of firms is the same
as that of Chapter 3, Section 5, but now we must include two new features,
namely, {resh entry and Poisson deaths. It proves morc convenient to work
in terms of the logarithm, x = log X. Let g(x) denote the density function
of the initial draw of x, and G(x) the corresponding cumulative distribution.
Note that the range of x extends to —co to the left. Let x* = log X*. Of the
newly entering firms, N|1 — G(x*)] immediately get a draw large enough to
justify activation. The rest join the mass of firms that do not complete the
second step of committing the investment cost at once, but wait to reach the
activation threshold.

For both groups, x continues to evolve. Applying Ito’s Lemma to (26),
we see that x follows the Brownian motion

dx = vdt + o dz, 3y
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where v = a ~ } a2 Also, both groups suffer cxogenous “deaths” under the
Poisson process with parameter A.

Begin with the waiting firms, which are distributed over the range
(—00, x*). Let N¢(x) denote the density of such firms at location x; the
factor N just scales this by the rate of entry and leads to a simpler equation
for ¢(x). For the density to remain constant through time, the rate at which
firms arrive at x (having received positive shocks from below or negative
shocks from above) must equal the rate at which firms at x move away (hav-
ing reccived shacks of the Brownian motion process or Poisson death). We
express this equation of “balanced flow™ of firms in a more precise way.

For this purpose, we use the binomial approximation to Brownian mo-
tion that proved so useful in Chapter 3, Section 2(b). Divide time into short
intervals of duration dt, and the x space into short scgments, each of length
dh = o Jdr. Of the firms located in one such segment, in one short time
interval a proportion Adt will die. Of the rest, a fraction p will move onc
segment to the right, and a fraction g will move to the left, where

[| v J}]_
a

Now consider the segment centered at x. It starts out with N¢(x)dh
firms. In the next unit time period dt, all of these move away with either
Poisson or Brownian shocks. New entrants, as well as firms from the left and
right, arrive to take their places. Figure 8.5 shows these flows schematically.

For balance we need

pet[ir Al -

fdl-

NoixYdh = Ng(xydh + p(1 — AdOy No(x — dhydh
an
+q(l—xdnyNotx + dindh. '

Cancelling the common factor N dh, expanding the ¢ (x £dh) on the right hand
side by Taylor's theorem, and simplifying, we get the differential equation

102¢"(x0) — vg'(x) — X p(x) + g(x) = 0. (33)
This equation is slightly different from the onc of Chapters 5-7 because
it pertains to a simple rather than geometric Brownian motion. However, the

method of solution is very similar. It is easy to verify that the general solution
has the form

o (x) = C expiyi x} + G explyz x] + ¢uix).
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The constant C is to be determined from the condition ¢ (x*) = 0. This yields

1 .

I.— s G 4SS PR | 34
¢(x) A+D_%02[ ] (34)

From this we can calculate some aggregates for the waiting firms. Their
total number is

MEN[ ¢(x)dx = Nl Y et
~o0 Atv-3o2y-—1

The rate of activation is

1 .2 -1 ..
N-————~——Ia (yl )e‘ ‘.

l+|r—502

—502N¢I(X.) =

We could similarly find the distribution of the mass of active firms. These
will extend over the cntire range x € (—o0, cv), because some firms may
have activated and then had their X decline. They are also augmented by
that part of the new entry flow that finds its initial X above X* and activates
immediately, and by the activation flow at x*. Their numbers are diminished
by the flow of Poisson deaths.

In fact we only need the total number of active firms, not the distribution
of their X valucs, to find the industry equilibrium. The new cntry flow that
activates immediately is N[I — G(x*)]. The activation low was found from
the solution for waiting firms above as —% a2 ¢'(x*). The population of active
firms being Q, the death flow is A Q. To keep the numbers constant, we need

AQ=N[1-Gx)=1a2¢'(x")). (35)

We can calculate x* and Q from earlier conditions of equilibrium: the activa-
tion condition (27) and the free entry condition (30). Therefore this equation
dcfines N. Since new cntrants are indifferent to their choice because of the
free entry condition (30)), we can adopt the usual convention of long-run
equilibrium analysis and suppose that just enough of them do enter. Thus the
“stochastically stationary” equilibrium depicted above can be sustained.

In our special case where X has the uniform distribution, the condition
(35) becomes
N % oly

A4v-— %02 '

rQ=N [I-e"

This allows us to calculate the rate of new entry N, either relative to the mass
of active firms Q, or relative to the total mass of active and waiting firms;

(Q+M).
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The various algebraic expressions get complicated, but some general
principles stand out. When the firms in an industry are subject to specific
shocks, the investment decisions of each are importantly influenced by the
option value of waiting for better realizations of its own shock. At the indus-
try level, the shocks and the responses of firms can apgregate into long-run
stationary conditions, so that the industry output and price are nonrandom.
However, the equilibrium levels of these variables are affected by the param-
eters of firm-specific uncertainty. Also, behind the aggregate certainty lics
a great deal of randomness and fluctuations: firms enter, invest, and exit in
response (0 the shocks to their individual fortunes.

In reality, industry-wide and firm-specific shocks occur together. Therc-
fore we will proceed to combine the models studied thus far in this chapter
into a single general model that encompasses both kinds of shocks. Then in
Chapter 12 we will consider an application to some real data.

5 A General Model

Now we cxamine industry equilibrium in a more general model where the two
kinds of uncertainty, firm-specitic and industry-wide, coexist. To aliow for the
added notational and mathematical complexities of the joint uncertainty, we
make somc simplifications in cach. Qur treatment closely follows Caballero
and Pindyck (1992).

We assume that the firms arc risk neutral (or that the industry-widc risk
is uncorrelated with the risk of the economy’s capital market as a whole),
leaving the more general case for the reader. We suppose that the inducrn
demand is isoelastic; thus the demand equation (1) becomes

P=XYQ", (36)

where 1/¢ is the price elasticity of demand. We also omit the second activation
stage from the above model of firm-specific uncertainty; thus / = 0 and
X =0

As before, cach firm has the capacity to produce a unit of output and
has no variable costs of production; thus, P is also its profit flow. Also as
before, we can think of this as the reduced form of a more gencral structure
in which any variable inputs (those without irreversibility or adjustment cost)
are chosen at their optimal levels. We continue to treat firms as infinitesimal
and their number as a continuous variable; then Q equals this number.
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The actual value of a firm with a given X is V(X W) = Xu(W). A
prospective entrant, however, observes only W. Therefore the expected value
from the entrant’s perspective is X v(W). The threshold W is defined by the
condition of free entry, so this expected value must equal the cost of entry R
at that point. Substituting and simplifying, we find

XWw= p'ﬂ i r+i-o —a,) R (43)
This is a very natural generalization that combines the corresponding equa-
tions for the case of pure industry-wide uncertainty-—ecquation (10) of Sec-
tion 2 above—and pure firm-specific uncertainty—equation (27) of Section 4
above. Its properties should by now be too familiar to necd comment.

For further theoretical details of this model we refer the reader to
Caballero and Pindyck (1992). In Chapter 12 we will discuss an empirical
application of it.

6 Guide to the Literature

Lucas and Prescott (1971) considered the rational expectations equilibrium
of investment in a competitive industry using a discrete-time Markov chain
model. They established the optimality of the equilibrium. Lippman and
Rumelt (1985) combined entry and exit in a similar model.

Edleson and Osband (1988) showed that a competitive firm's entry and
exit thresholds in equilibrium were not the Marshallian ones. The coincidence
between a monopoly firm’s option-value thresholds and a competitive firm’s
free entry threshold was first noted by Leahy (1992). Our exposition mostly
follows Dixit (1993b).

Dumas (1992) presented an early model of general equilibrium where
each firm made costly switching decisions under Brownian motion uncer-
tainty; this was in the context of international relocation of productive capital,
and the aim was to characterize the equilibrium dynamics of real exchange
rates.

Caballero (1991) attempted to study industry equilibrium by the shortcut
of modelling just one firm’s decision, parametrically varying the price elastic-
ity of its demand, and interprcting perfect competition as the limit when the
elasticity goes to infinity. He argued that the traditional present value criterion
would be restored in this limit. However, one must recognize that the level
of price about which to make the demand more elastic is itself endogenous,
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and morcover, it acts as a ceiling or reflecting barrier. These cffects can be
understood only by conducting a proper industry-level analysis. Sce Pindyck
(1993a) for a more specific and detailed discussion of this point. Caballcro
and Pindyck (1992) later joined forces to produce the model of industry equi-
librium with combined firm-specific and aggregate uncertainty that forms the
basis of our treatment above.



